A new type of the generalized Bézier curves
نویسنده
چکیده
In this paper, we improve the generalized Bernstein basis functions introduced by Han, et al. The new basis functions not only inherit the most properties of the classical Bernstein basis functions, but also reserve the shape parameters that are similar to the shape parameters of the generalized Bernstein basis functions. The degree elevation algorithm and the conversion formulae between the new basis functions and the classical Bernstein basis functions are obtained. Also the new Q-Bézier curve and surface constructed by the new basis functions are given and their properties are discussed.
منابع مشابه
Degree Reduction of Disk Wang-Bézier Type Generalized Ball Curves
A disk Wang-Bézier type generalized Ball curve is a Wang-Bézier type generalized Ball curve whose control points are disks in a plane. It can be viewed as a parametric curve with error tolerances. In this paper, we discuss the problem of degree reduction of disk Wang-Bézier type generalized Ball curve, that is, bounding disk Wang-Bézier type generalized Ball curves with lower degree disk Wa...
متن کاملDegree Reduction of Disk Wang-Bézier Type Generalized Ball Curves
A disk Wang-Bézier type generalized Ball curve is a Wang-Bézier type generalized Ball curve whose control points are disks in a plane. It can be viewed as a parametric curve with error tolerances. In this paper, we discuss the problem of degree reduction of disk Wang-Bézier type generalized Ball curve, that is, bounding disk Wang-Bézier type generalized Ball curves with lower degree disk Wa...
متن کاملExplicit Multi-degree Reduction of Said-Bézier Generalized Ball Curves with Endpoints Constraints ?
Theoretical study shows that Said-Bézier generalized Ball curves (SBGB curves) are distinctly superior to Bézier curves in evaluation, degree elevation and reduction. However in practical engineering, there is no effective algorithm for explicit multi-degree reduction of SBGB curves with endpoints constraints in the world. It is going against designing and applying generalized Ball curves. In o...
متن کاملA New Common Fixed Point Theorem for Suzuki Type Contractions via Generalized $Psi$-simulation Functions
In this paper, a new stratification of mappings, which is called $Psi$-simulation functions, is introduced to enhance the study of the Suzuki type weak-contractions. Some well-known results in weak-contractions fixed point theory are generalized by our researches. The methods have been appeared in proving the main results are new and different from the usual methods. Some suitable examples ar...
متن کاملA Generalization of Rational Bernstein Bézier Curves
This paper is concerned with a generalization of BernsteinBézier curves. A one parameter family of rational BernsteinBézier curves is introduced based on a de Casteljau type algorithm. A subdivision procedure is discussed , and matrix representation and degree elevation formulas are obtained. We also represent conic sections using rational q-BernsteinBézier curves.
متن کامل